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1.1 Introduction

Automatic image colorization consists in adding colors to a new greyscale image without any user inter-

vention. The problem, stated like this, is ill-posed, in the sense that one cannot guess the colors to assign

to a greyscale image without any prior knowledge. Indeed, many objects can have different colors: not
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only artificial, plastic objects can have random colors, but natural objects like tree leaves can have various

nuances of green and turn brown during autumn, without a significant change of shape.

The color prior most often considered in the literature is the user: many approaches consist in letting

the user determine the color of some areas and then in extending this information to the whole image, either

by pre-computing a segmentation of the image into (hopefully) homogeneous color regions, or by spreading

color flows from the user-defined color points. This last method supposes a definition of the difficulty of

the color flow to go through each pixel, usually estimated as a simple function of local greyscale intensity

variations, as in Levin et al. [1], in Yatziv and Sapiro [2], or in Horiuchi [3], or by predefined thresholds to

detect color edges [4]. However, we have noticed, for instance, that the simple, efficient framework by Levin

et al. cannot deal with texture examples such as in figure 1.1, whereas simple oriented texture features such

as Gabor filters would have obviously solved the problem1. This is the reason why we need to consider

texture descriptors. More generally, each hand-made criterion for edge estimation has its drawbacks, and

therefore we will learn the probability of color change at each pixel instead of setting a hand-made criterion.

Figure 1.1: Failure of standard colorization algorithms in presence of texture. Left: manual initialization;

right: result of Levin et al.’s approach. In spite of the general efficiency of their simple method (based on

the mean and standard deviation of local intensity neighborhoods), texture remains difficult to deal with.

Hence the need of texture descriptors and of learning edges from color examples.

User-based approaches present the advantage that the user can interact, add more color points if needed,

until a satisfying result is reached, or even place color points strategically in order to give indirect informa-

tion on the location of color boundaries. Our method can easily be adapted to incorporate such user-provided

color information. The task of providing first a fully automatic colorization of the image, before a possible

user intervention if necessary, is however much harder.

Some recent attempts of predicting the colors gave mixed results. For instance the problem has been

studied by Welsh et al. [5]; it is also one of the applications presented by Hertzmann et al. in [6]. However

the framework developed in both cases is not mathematically expressed, in particular it is not clear whether

an energy is minimized, and the results shown seem to deal with only a few colors, with many small artifacts
1Their code is available at http://www.cs.huji.ac.il/˜weiss/Colorization/.
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probably due to the lack of a suitable spatial coherency criterion. An other notable study is by Irony et al.

[7]: it consists in finding a few points in the image where a color prediction algorithm reaches the highest

confidence, and then in applying Levin’s approach as if these points were given by the user. Their approach

of color prediction is based on a training set of colored images, partially segmented by the user into regions.

The new image to be colored is then automatically segmented into locally homogeneous regions whose

texture is similar to one of the colored regions previously observed, and the colors are transferred. Their

method reduces the effort required of the user but still requires a manual pre-processing step. To avoid this,

they proposed to segment the training images automatically into regions of homogeneous texture, but fully

automatic segmentation (based on texture or not) is known to be a very hard problem. In our approach we

will not rely on an automatic segmentation of the training or test images but we will build on a more robust

ground.

Irony’s method also brings more spatial coherency than previous approaches, but the way coherency is

achieved is still very local since it can be seen as a one-pixel-radius filter, and furthermore it relies partly on

an automatic segmentation of the new image.

But above all, the latter method, as well as all other former methods in the history of colorization (to the

knowledge of the authors), cannot deal with the case where an ambiguity concerning the colors to assign can

be resolved only at the global level. The point is that local predictions based on texture are most often very

noisy and not reliable, so that information needs to be integrated over large regions to become significant.

Similarly, the performance of an algorithm based on texture classification, such as Irony’s one, would drop

dramatically with the number of possible texture classes, so that there is a real need for robustness against

texture misclassification or noise. In contrast to previous approaches, we will avoid to rely on very-local

texture-based classification or segmentation and we will focus on more global approaches.

The color assignment ambiguity also happens when the shape of objects is relevant to determine the color

of the whole object. More generally, it appears that boundaries of objects contain much not-immediately-

usable information, such as the presence of edges in the color space, and also contain significant details

which can help the identification of the whole object, so that the colorization problem cannot be solved

at the local level of pixels. In this chapter we try to make use of all the information available, without

neglecting any low probability at the local level which could make sense at the global level.

Another source for prior information is motion and time coherency in the case of video sequences to

be colored [1]. Though our framework can easily be extended to the film case and also benefit from this

information, we will deal only with still images in this chapter.

First we present, in section 1.2, the model chosen for the color space, as well as the model for local

greyscale texture. Then, in section 1.3, we state the problem of automatic image colorization in machine

learning terms, explain why the naive approach, which consists in trying to predict directly color from
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texture, performs poorly, and we show how to solve the problem by learning multimodal probability distri-

butions of colors, which allows the consideration of different possible colorizations at the local level. We

also show how to take into account user-provided color landmarks when necessary. We start section 1.4

with a way to learn how likely color variations are at each pixel of the image to color. This defines a spatial

coherency criterion which we use to express the whole problem mathematically. We solve a discrete version

of it via graph cuts, whose result is already very good, and refine it to solve the original continuous prob-

lem. Finally, in section 1.5, we propose a discriminative way to model spatial coherency, with structured

prediction learning.

1.2 Model for colors and greyscale texture

We first model the basic quantities to be considered in the image colorization problem.

Let I denote a greyscale image to be colored, p the location of one particular pixel, and C a proposition

of colorization, that is to say an image of same size as I but whose pixel values C(p) are in the standard

RGB color space. Since the greyscale information is already given by I(p), we should add restrictions on

C(p) so that computing the greyscale intensity of C(p) should give I(p) back. Thus the dimension of the

color space to be explored is intrinsically 2 rather than 3.

We present in this section the model chosen for the color space, our way to discretize it for further

purposes, and how to express continuous probability distributions of colors out of such a discretization. We

also present the feature space used for the description of greyscale patches.

1.2.1 L-a-b color space

In order to quantify how similar or how different two colors are, we need a metric in the space of colors.

Such a metric is also required to associate to any color a corresponding grey level, i.e. the closest unsaturated

color. This is also at the core of the color coherency problem: an object with a uniform reflectance will show

different colors in its illuminated and shadowed parts since they have different grey levels, so that we need

a way to define robustly colors against changes of lightness, that is to consider how colors are expected to

vary as a function of the grey level, i.e. how to project a dark color onto the subset of all colors who share a

particular brighter grey level.

The psychophysical L-a-b color space was historically designed so that the Euclidean distance between

the coordinates of any colors in this space approximates as well as possible the human perception of dis-

tances between colors. The transformation from standard RGB colors to L-a-b consists in first applying

gamma correction, followed by a linear function in order to obtain the XY Z color space, and then by an-

other highly non-linear application which is basically a linear combination of the cubic roots of the coordi-
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Figure 1.2: Examples of color spectra and associated discretizations. For each line, from left to right: color

image; corresponding 2D colors; location of the observed 2D colors in the ab-plane (a red dot for each

pixel) and the computed discretization in color bins; color bins filled with their average color; continuous

extrapolation: influence zones of each color bin in the ab-plane (each bin is replaced by a Gaussian, whose

center is a black dot; red circles indicate the standard deviation of colors within the color bin, blue ones are

three times bigger).

nates in XY Z. We refer to Lindbloom’s website2 for more details on color spaces or for the exact formulas.

The L-a-b space has three coordinates: L expresses the luminance, or lightness, and is consequently the

greyscale axis, whereas a and b stand for two orthogonal color axes.

We choose the L-a-b space to represent colors since its underlying metric has been designed to express

color coherency. In the following, by grey level and 2D color we will mean respectively L and (a, b).

With the previous notations, since we already know the grey level I(p) of the color C(p) to predict at

pixel p, we search only for the remaining 2D color, denoted by ab(p).

1.2.2 Discretization of the color space

This subsection contains more technical details and can be skipped in the first reading.

In section 1.3 we will temporarily need a discretization of the 2D color space. Instead of setting a regular

grid, we define a discretization adapted to the color images given as examples so that each color bin will

contain approximately the same number of observed pixels with this color. Indeed, some entire zones of the

color space are useless and we prefer to allocate more color bins where the density of observed colors is

higher, so that we can have more nuances where it makes statistical sense. Figure 1.2 shows the densities of

colors corresponding to some images, as well as the discretizations in 73 bins resulting from these densities.

We colored each color bin by the average color of the points in the bin. To obtain these discretizations, we

2http://brucelindbloom.com/
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used a polar coordinate system in ab and cut recursively color bins with highest numbers of points at their

average color into 4 parts. Discussing the precise discretization algorithm is not relevant here provided it

makes sense statistically; we could have used K-means for instance.

Further, in section 1.4, we will need to express densities of points over the whole plane ab, based on

the densities computed in each color bin. In order to interpolate continuously the information given by each

color bin i, we place Gaussian functions on the average color µi of each bin, with a standard deviation

proportional to the statistically observed standard deviation σi of points of each color bin (see last column

of figure 1.2). Then we interpolate the original density d(i) to any point x in the ab plane by:

dG(x) =
∑
i

1
π(ασi)2

e
− (x−µi)

2

2(ασi)
2 d(i)

We found experimentally that considering a factor α ≈ 2 improved significantly the distribution aspect.

Cross-validation could be used to determine the optimal α for a given training set.

1.2.3 Greyscale patches and features

The grey level of one pixel is clearly not informative enough to decide which 2D color we should assign to

it. The hope is that texture and local context will give more clues for such a task (see section 1.3). In order to

extract as much information as possible to describe local neighborhoods of pixels in the greyscale image, we

compute SURF descriptors [8] at three different scales for each pixel. This leads to a vector of 192 features

per pixel. In order to reduce the number of features and to condense the relevant information, we apply

Principal Component Analysis (PCA) and keep the first 27 eigenvectors, to which we add, as supplemental

components, the pixel grey level as well as two biologically inspired features: a weighted standard deviation

of the intensity in a 5× 5 neighborhood (whose meaning is close to the norm of the gradient), and a smooth

version of its Laplacian. We will refer to this 30-dimensioned vector, computed at each pixel, as local

description in the following, and denote it by v or w.

1.3 Color prediction

Now that we have modelled colors as well as local descriptions of greyscale images, we can start stating the

image colorization problem. Given a set of examples of color images, and a new greyscale image I to be

colored, we would like to extract knowledge from the training set to predict colors C(p) for the new image.

1.3.1 Need for multimodality

One could state this problem in simple machine learning terms: learn the function which associates to any

local description of greyscale patches the right color to assign to the center pixel of the patch. This could be
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achieved by kernel regression tools such as Support Vector Regression (SVR) or Gaussian Processes [9].

There is an intuitive reason why this would perform poorly. Many objects can have different colors, for

instance balloons at a fair could be green, red, blue, etc., so that even if the task of recognizing a balloon

was easy and that we knew that we should use colors from balloons to color the new one, a regression would

recommend the use of the average value of the observed balloons, i.e. grey. The problem is however not

specific to objects of the same class. Local descriptions of greyscale patches of skin or sky are very similar,

so that learning from images including both would recommend to color skin and sky with purple, without

considering the fact that this average value is never probable.

We therefore need a way to deal with multi-modality, i.e. to predict different colors if needed, or more

exactly, to predict at each pixel the probability of every possible color. This is in fact the conditional

probability of colors knowing the local description of the greyscale patch around the pixel considered. We

will also be interested in the confidence in these predictions in order to know whether some predictions are

more or less reliable than others.

1.3.2 Probability distributions as density estimations

The conditional probability of the color ci at pixel p knowing the local description v of its greyscale neigh-

borhood can be expressed as the fraction, amongst colored examples ej = (wj , c(j)) whose local descrip-

tion wj is similar to v, of those whose observed color c(j) is in the same color bin Bi. We thus have to

estimate densities of points in the feature space of grey patches. This can be accomplished with a Gaussian

Parzen window estimator:

p(ci|v) =
( ∑
{j : c(j)∈Bi}

k(wj ,v)
)/∑

j

k(wj ,v)

where k(wj ,v) = e−(wj−v)2/2σ2
is the Gaussian kernel. The best value for the standard deviation σ can

be estimated by cross-validation on the densities. With this framework we can express how reliable the

probability estimation is: its confidence depends directly on the density of examples around v, since an

estimation far from the clouds of observed points loses signification. Thus, the confidence in a probability

prediction is the density in the feature space itself:

p(v) ∝
∑
j

k(wj ,v)

In practice, for each pixel p, we compute the local description v(p), but we do not need to compute the

similarities k(v,wj) to all examples in the training set: in order to save computational time, we only search

for theK-nearest neighbors of v in the training set, withK sufficiently large (as a function of the σ chosen),

and estimate the Parzen densities based on these K points. In practice we choose K = 500, and thanks to



8 Computational Photography: Methods and Applications

fast nearest neighbor search techniques such as kD-tree3, the time needed to compute all predictions for all

pixels of a 50×50 image is only 10 seconds (for a training set of hundreds of thousands of patches) and this

scales linearly with the number of test pixels. Note that we could also have used sparse kernel techniques

such as SVR to estimate, for each color bin, a regression between the local descriptions and the probability

of falling into the color bin. We refer more generally to [9] for details and discussions about kernel methods.

1.3.3 User-provided color landmarks

We can easily consider user-provided information such as the color c at pixel p in order to modify a coloriza-

tion obtained automatically. We set p(c|p) = 1 and set the confidence p(p) to a very large value. Conse-

quently our optimization framework is still usable for further interactive colorization. A re-colorization with

new user-provided color landmarks does not require the re-estimation of color probabilities, and therefore

lasts only a fraction of second (see next part).

1.4 Learning color variations

For each pixel of a new greyscale image, we are now able to estimate the probability distribution of all

possible colors (within a big finite set of colors since we discretized the color space into bins). The interest in

such computation is that, if we add a spatial coherency criterion, a pixel will be influenced by its neighbors,

and the choice of the best color to assign will be done accordingly to the probability distributions in the

neighborhood. Since all pixels are linked by neighborhoods, even if not directly, they all interact with each

other, so that the solution has to be computed globally. Indeed it may happen that, in some regions that are

supposed to be homogeneous, a few different colors may seem to be the most probable ones at a local level,

but that the winning color at the scale of the region is different, because in spite of its only second rank

probability at the local level, it ensures a good probability everywhere in the whole region. The opposite

may also happen: to flip a whole such region to a color, it may be sufficient that this color is considered as

extremely probable at a few points with high confidence. The problem is consequently not trivial, and the

issue is to find a global solution. In this section we first learn a spatial coherency criterion, then find a good

solution to the whole problem with the help of graph cuts.

1.4.1 Local color variation prediction

Instead of picking randomly a prior for spatial coherence, based either on detection of edges, or on the

Laplacian of the intensity, or on a pre-estimated complete segmentation, we learn directly how likely it is

to observe a color variation at a pixel knowing the local description of its greyscale neighborhood, based on

3We use, without particular optimization, the TSTOOL package available at http://www.physik3.gwdg.de/tstool/.
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a training set of real color images. The technique is similar to the one detailed in the previous section. For

each example wj of colored patch, we compute the norm gj of the gradient of the 2D color (in the L-a-b

space) at the center of the patch. The expected color variation g(v) at the center of a new greyscale patch v

is then:

g(v) =

∑
j k(wj ,v) gj∑
j k(wj ,v)

.

Thus we now have priors both on the colors and on the color variations.

1.4.2 Global coherency via graph cuts

The graph cut, or max flow, algorithm is a minimization technique widely used in computer vision [10, 11]

because of its suitability for many image processing problems, because of its guarantee to find a good local

minimum, and because of its speed. In the multi-label case with α-expansion [12], it can be applied to

all energies of the form
∑

i Vi(xi) +
∑

i∼j Di,j(xi, xj) where xi are the unknown variables, with possible

values in a finite set L of labels, where the Vi are any functions, and whereDi,j are any pair-wise interaction

terms with the restriction that each Di,j(·, ·) should be a metric on L.

The reason why we temporarily discretized the color space in section 1.2 was to be able to use this

technique. We formulate the image colorization problem as an optimization problem on the following

energy:

∑
p

Vp(c(p)) + λ
∑
p∼q

|c(p)− c(q)|Lab
gp,q

(1.1)

where Vp(c(p)) = − log
(
p
(
v(p)

) )
p
(
c(p)|v(p)

)
is the cost of choosing color c(p) for pixel p

(whose neighboring texture is described by v(p))) and where gp,q = 2
(
g(v(p))−1 + g(v(q))−1

)−1 is the

harmonic mean of the estimated color variation at pixels p and q. An 8-neighborhood is considered for the

interaction term, and p ∼ q means that p and q are neighbors.

The term Vp penalizes colors which are not probable at the local level according to the probability

distributions obtained in section 1.3, with the strength depending on the confidence in the predictions. The

interaction term between pixels penalizes color variation where it is not expected, according to the variations

predicted in the previous paragraph.

We use the graph cut package4 provided by [13]. The solution for a 50×50 image and 73 possible colors

is obtained by graph cuts in a fraction of second and is generally already very satisfying. The computation

time scales approximately quadratically with the size of the image, which is still fast, and the algorithm

performs well even on massively down-scale versions of the image, so that a good initial clue can still be

4available at http://vision.middlebury.edu/MRF/code/
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given quickly for very big images too. The computational costs compete with those of the fastest colorization

techniques [14] while bringing much more spatial coherency.

1.4.3 Refinement in the continuous color space

We can now go back to the initial problem in the continuous space of colors. We interpolate probability

distributions p(ci|v(p)) estimated at each pixel p for each color bin i, to the whole space of colors with

the technique described in section 1.2, so that Vp(c) is now defined for any color c and not only for color

bins. The energy (1.1) can consequently be minimized in the continuous space of colors. We start from the

solution obtained by graph cuts and refine it with a gradient descent. This refinement step will generally not

introduce huge changes like flipping of whole regions, but will bring more nuances.

Figure 1.3: Da Vinci case: Mona Lisa colored with Madonna with the yarnwinder. The border is not

colored because of the window size needed for SURF descriptors. Second line: color variation predicted

(white stands for homogeneity and black for color edge); most probable color at the local level; 2D color

chosen by graph cuts. Note that previous algorithms could not deal with regions such as the neck or the

forehead, where blue is the most probable color at the local level because greyscale skin looks like sky.

Surroundings of these regions and lower-probability colors are decisive for the final color choice.

1.4.4 Experiments

We now show results of automatic colorization. In figure 1.3 we colored a famous painting by Leonardo

Da Vinci with another painting of his. The paintings are significantly different and textures are relatively



Machine Learning Methods for Automatic Image Colorization 11

dissimilar. The prediction of color variation performs well and helps much to determine the boundaries of

homogeneous color regions. The multimodality framework proves extremely useful in areas such as Mona

Lisa’s forehead or neck where the texture of skin can be easily mistaken with the texture of sky at the local

level. Without our global optimization framework, several entire skin regions would be colored in blue,

disregarding the fact that skin color is a second probable possibility of colorization for these areas, which

makes sense at the global level since they are surrounded by skin-colored areas, with low probability of

edges. We insist on the fact that the input of previous texture-based approaches is very similar to the “most

probable color” prediction (second line, middle image), whereas we consider the probabilities of all possible

colors at all pixels. This means that, given a certain quality of texture descriptors, we handle much more

information.

In figure 1.4 we perform similar experiments with photographs of landscapes. The effect of the refine-

ment step can be observed in the sky, where nuances of blue vary more smoothly.

Figure 1.4: Landscape example. Same display as in figure 1.3, plus last image: colors obtained after

refinement step. Note that the sky is more homogeneous, the color gradients in the sky are smoother than

when obtained directly by graph cuts (previous image).

We compare our method with the one by Irony et al., on their own example [7] in figure 1.5; the task is

easier, and results are similar. The boundaries of our color regions fit better to the zebra contour. However,

grass areas near the zebra are colored according to the grass observed at similar locations around the zebra

in the training image, thus creating color halos which are visually not completely satisfactory. This bias

should disappear with bigger training sets since the color of the background would become independent of

zebra’s presence.

In figure 1.6 we consider a very difficult task: the one of coloring an image from a Charlie Chaplin

movie, with many different objects and textures, such as a brick wall, a door, a dog, a head, hands, a loose
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suit... Because of the number of objects, and because of their particular arrangement, it is unlikely to find

a single color image with a similar scene that we would use as a training image. Thus we consider a small

set of three different images, each of which shares a partial similarity with Charlie Chaplin’s image. The

underlying difficulty is that each training image also contains parts which should not be re-used in this target

image. The result is however promising, considering the training set. Dealing with bigger training datasets

should slow the process only logarithmically, during the kD-tree search.

Figure 1.5: Comparable results with Irony et al. on their own example[7]. First line: our result. Second line,

left: our predicted 2D colors; right: Irony et al.’s result with the assumption that this is a binary classification

problem. Note that this example they chose could be solved easily without texture consideration since there

is a simple correspondence between grey level intensity and color. Concerning our result, the color variations

in the grass around the zebra are probably due to the influence of the grass color for similar patches in the

training image, and this problem should disappear with a larger training set : we should not try to learn

colors from a single overfitted, carefully-chosen training image but rather check how the colorization scales

with the number of training images and with their non-perfect suitability. Note however, if you zoom in,

that the contour of the zebra matches exactly boundaries of 2D color regions (purple and pink), whereas in

Irony et al.’s result, a several pixel wide band of grass around the zebra’s legs and abdomen are colored as

if they were part of the zebra.

1.4.5 Experiments in the interactive framework

It could be nice to add some results related to section 1.3.3 (with user-interaction), since it has been

implemented... and then a comparison with Levin et al. would be required, and we do not always perform
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Figure 1.6: Charlie Chaplin frame colored by three different images. Second line: prediction of color

variations, most probable color at the local level, and final result. This example is particularly difficult

because many different textures and colors are involved and because there does not exist color images very

similar to Charlie Chaplin’s one. We have chosen three different images, each of which shares a partial

similarity with the target image. In spite of the complexity, the prediction of color edges or of homogeneous

regions remains significant. The brick wall, the door, the head and the hands are globally well colored. The

large trousers are not in the training set; the mistakes in the colors of Charlie Chaplin’s dog are probably

due to the blue reflections on the dog in the training image and to the light brown of its head. Both would

probably benefit from larger training sets.

better. In the general case, the very simple method by Levin et al. performs surprisingly well (better than

ours), even though it is not designed to be able to deal with texture; but it fails on high-contrast textures like

zebras’s.

1.4.6 Scaling with training set size (or not)

Consideration of 20 or 50 paintings of the same painter as a training set. Not clear how this would perform.

1.5 Structured prediction learning

Yasemin & Ilja’s part.

1.5.1 SVM for structured output prediction

Multiclass Support Vector Machines [?, ?] are widely used in the machine learning community for classifi-

cation tasks, however, the output space is limited to simple class labels.
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A generalization for one-dimensional sequences of labels was proposed by Altun et al.[?]

Tsochantaridis et al.[?] described a method for generalizing SVM classification to arbitrary structured

outputs and a polynomial time training algorithm. The idea is to learn a discriminant function F : X×Y ⇒

R over input/output pairs. A prediction for a label y can be derived by maximizing F over the space of

possible labels Y for a given input x.

ȳ = argmax
y∈Y

F (x, y;w), (1.2)

where w denotes a parameter vector. F is assumed linear in a combined representation of inputs and outputs

Φ(x, y). Thus, F (x, y;w) can be expressed as a dot product between the feature map Φ(x, y) and the

parameter vector w.

F (x, y;w) =< w,Φ(x, y) > . (1.3)

The form of Φ depends on the structure of the problem and we will describe our definition in section 1.5.3.

The optimization problem which has to be solved during the training phase is as follows

SVM∆m
1 :

min
w, ζ

1
2
||w||2 +

C

I

I∑
i=1

ζi; ∀i,∀y ∈ Y r yi : 〈w,Φ(xi, yi)− Φ(xi, y)〉 ≥ ∆(yi, y)− ζi; (1.4)

, where ∆(yi, y) denotes the loss function. The basic idea of training is to find a small set of constraints that

ensures a sufficiently accurate solution. For each training sample, a working set of constraints is maintained.

In each iteration of the most violated constraint is added for each training sample to its working set. The

algorithm terminates when no constraint from the working sets is violated by more than a small ε value.

1.5.2 Features

1.5.3 Intermodal image prediction with structured SVM

The framework of SVMstruct needs to be adapted to the specific requirements of the image prediction

task. Firstly, we need to define a joint representation of the input and output images. This representation is

described in section ??. Secondly, a task-specific loss function which reflects the similarity between target

images has to be defined (Section 1.5.3). Finally, we need an efficient method for maximization of the dot

product between the weights and the feature map (Section ??).

Feature functions

The joint feature map Φ(x, y) provides a compact representation of input image characteristics, combined

with their relationship to the predicted labels. The structure is depicted in figure ??. Basically, we can

distinguish between two kinds of features. The first type provides local characteristics of a predicted pixel
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label. It can be formalized as follows

φtc(x, y) = {[yt = c]ψr(xt)|r = 1, . . . , R} , (1.5)

where x denotes the input image, y the predicted image, t the position in the image and c a color label. [. . .]

is the indicator function. details. ψr(xt) represents the rth feature value at the position t. In our setting, r

ranges from 1 to 30. The features we use are described in section ??.

The second type expresses the relationship between two neighboring labels t1 and t2 :

φt1t2c1c2 = [yt1 = c1 ∧ yt2 = c2]. (1.6)

The combined feature map at location t is build by a union of both types of features:

Φ(x, y; t) = {φtc(x, y)| ∀ c} ∪ {φt1t2c1c2(x, y)| ∀ c1, c2, t1 ∼ t2}. (1.7)

Finally, we compute the joint feature map Φ(x, y) by summing up the feature maps at each location t in

the image:

Φ(x, y) =
T∑
t=1

Φ(x, y; t). (1.8)

Loss functions

In the search for the most violated constraint during the training, we need to measure the correctness of

the predicted labellings. We tested three loss functions which differ in the incorporation of task-specific

information formulation.

The zero-one loss is the most unspecific loss function. It returns 1 if two image labellings are equal and

0 otherwise.

The Hamming loss compares the pixel labellings on local level

∑
t

[yt! = ȳt], (1.9)

where yt is the true label at location t and ȳt the predicted label.

The distance loss also takes into account the perceived difference between colors

∑
t

||yt − ȳt||
maxa,b∈C ||a− b||

. (1.10)

The normalization term ensures that the local color differences are between 0 and 1.
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Label inference

A crucial part of the framework is the maximization of the dot product between the feature map and the

weight vector over the space of possible labels. During training, we have to search for the most violated

constraint insert and cite equation in every iteration and for every training sample, so speed is an important

factor.

Local maximization

As a baseline, we used a joint feature map without neighborhood dependencies

ΦL(x, y; t) = {φtc(x, y)| ∀ c}PhiL(x, y) =
T∑
t=1

Φ(x, y; t). (1.11)

For this feature map, the maximization can be performed locally for every pixel t

argmax
ȳ
〈ΦL(x, ȳ), w〉 = argmax

ȳ
〈
T∑
t=1

ΦL(x, y; t), w〉 (1.12)

= 〉
T∑
t=1

argmax
c

ΦL(x, y; t), w〉. (1.13)

Global maximization

For the case of a full feature map with dependencies between neighboring labels, the maximization has to be

performed globally over the whole image. We used the code from Szeliski et al. [?], which contains several

algorithms for energy minimization over Markov Random Fields. In our studies, we used Loopy Belief

Propagation (LBP) and Tree-Reweighted Message Passing (TRW-S). It might make sense to try Graph

Cuts, with all the improvements done on the MR-CT code, it should work. The energy function is derived

from the dot product of the joint feature map and the weight vector and consists of a data energy Ed for

each pixel t and a label c and a transition/smoothness energy Es between two labels c1 and c2 , smoothness

energy is position independent, best to change the ψ definition to reflect this.

Ed(t, c) = 〈w[cR,(c+1)R], φ
t
c(x, y)〉 (1.14)

Es(c1, c2) = −s · wc1,c2 · f, (1.15)

where s is a parameter to adjust the balance between both energy types and f is parameter which can be

used to incorporate prior knowledge about the transition costs. It can take the following values:

• 1, when no prior knowledge is used.

• Similarity between colors 1− ||c−d||
maxa,b∈C ||a−b|| + ε.

• Normalized relative frequency of transitions between c1 and c2Formula
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1.5.4 Experiments

We performed various experiments with different image sets to test the performance of our method. As a

baseline, we used a setup where no neighborhood interactions in training or test were considered. Fur- ther,

we performed a local training without neighborhood interactions, but used color similarity as neighborhood

interaction terms. Finally, we used trained neighborhood interaction terms both in training and test.

1.6 Discussion

We presented a new approach for automatic image colorization, which does not require any intervention by

the user, except from the choice of relatively similar color images. The problem was stated mathematically,

as an optimization problem with an explicit energy to minimize. Since it deals with multimodal probability

distributions until the final step, this approach makes better use of the information that can be extracted from

images by machine learning tools. The fact that the problem is solved directly at the global level, with the

help of graph cuts, makes the framework more robust to noise and local prediction errors. It also makes

it possible to resolve large scale ambiguities which previous approaches could not. This multi-modality

framework is not specific to image colorization and could be re-used in any prediction task on images.

We used a relatively similar approach for medical imaging purposes, in order to predict computational

tomography scans for patients whose magnetic resonance scans are known[15].

We also proposed a way to learn and predict where color variations are probable and how important they

are, instead of choosing a spatial coherency criterion by hand, and this performs quite well (see figures 1.3

and 1.6 again). It relies on many features and adapts itself to the current training set.

This colorization approach show significant improvements over [5] and [6], whose examples contain

only few colors and lack spatial coherency. The process requires less or similar intervention than [7], and

can handle more ambiguous cases and more texture noise. The automatic colorization results should not be

compared to those obtained by user-helped approaches since such decisive information is not given here.

Nevertheless, since the computational time needed is low, a re-colorization with new color landmarks lasts

a fraction of second, and this enables real-time user interaction. This interactive version of the colorization

framework clearly competes with the state of the art of colorization with user scribbles[1]. (– This supposes

to show comparisons with Levin et al.)
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